Probabilistic Methods in Combinatorics

Instructor: Oliver Janzer

Solutions to Assignment 5

Problem 1. Prove that there is an absolute constant ¢ > 0 with the following property.
Let A be an n by n matrix with pairwise distinct entries. Then there is a permutation of
the rows of A so that no column in the permuted matrix contains an increasing subsequence
of length at least c¢y/n.

Solution. Let ¢ be a constant which we will specify later and let k& = [¢y/n]. Take a
permutation of the rows of A uniformly at random. Let the permuted matrix be B. For any
l1<j<nandany 1 <i < iy < -+ < i, < n,let T(j;i1,...,7) be the event that the

sequence B;, ;, Bi, ;,. .., B;, ; is increasing. Note that B contains an increasing subsequence
of length at least cy/n in some column if and only if at least one of the events T'(j; i1, ..., ix)
occurs.

However, the probability of each T'(j;iy,...,4) is 1/k! since any ordering of the elements

B B, ; is equally likely. Hence, by the union bound,
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Using the approximations (Z) < (%)k, k! > 27k - k*e™* and k > c\/n, we get
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If ¢ > e, then this expression tends to 0 as n — 0o. So we can choose a constant ¢ for which

P(B contains an increasing subsequence of length at least c¢y/n in some column) < 1

for all n. This means that for this choice of ¢, any matrix A has a permutation of its rows

so that no column in the permuted matrix contains an increasing subsequence of length at

least cy/n.

Problem 2. Prove that every three-uniform hypergraph with n vertices and m > n/3

hyperedges contains an independent set (i.e. a set of vertices containing no hyperedges) of



size at least
2n3 /2
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Let S be a random subset of vertices where every vertex is chosen independently with
probability p = \/W Note that by assumption, 0 < p < 1, so p is indeed a valid
probability. For every edge whose all three vertices are in S, remove at most one vertex.
Thus we obtain an independent set I. Let X = |S| and Y be the number of edges whose all

three vertices are in S. Then |I| > X —Y. Showing E[X -Y] > g%, finishes the proof by the
first moment method. Using linearity of expectation, we have E[X] = np and E[Y] = mp3.

Plugging in the value of p, we get E[X — Y| = 5\’}2’%, as claimed.

Problem 3. Prove that if there exists some 0 < p < 1 such that
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then R(t,k) > n/2. Using this, show that the Ramsey number R(4, k) satisfies

R(4,k) > Q((k/1nk)?).

Solution. Define a random red-blue colouring of the edges of K, as follows. Colour every
edge red with probability p and blue with probability 1—p. Then the expected number of red
cliques of size t is (th) p(é), while the expected number of blue cliques of size k is (Z) (1— p)(g)
Hence, there exists a colouring in which the number of blue cliques of size t plus the number
of red cliques of size k is at most (?)p(;) + (Z)(l — p)(g) By assumption, this is at most
n/2. Hence, we can delete at most n/2 vertices and get rid of all red cliques of size ¢ and
blue cliques of size k. The remaining graph has at least n/2 vertices and it has no forbidden

clique, so R(t, k) > n/2.
We will now use this result with ¢ = 4 to prove R(4,k) > Q((k/Ink)?). Take n = c(k/Ink)?

for a sufficiently small positive constant ¢. We need to prove the existence of 0 < p <1
which satisfies ('})p® + (}) (1 — p)(g) < n/2. To make sure that the first summand is at most

n/4, we take p =n~1/% = ¢71/2. Bk Then
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Note that if ¢ is a sufficiently small positive constant, then ne ?"z = c(k/Ink)%e <

1, so in this case (})p® + (})(1 —p)(g) <n/4+1<n/2.



