
Probabilistic Methods in Combinatorics

Instructor: Oliver Janzer

Solutions to Assignment 5

Problem 1. Prove that there is an absolute constant c > 0 with the following property.

Let A be an n by n matrix with pairwise distinct entries. Then there is a permutation of

the rows of A so that no column in the permuted matrix contains an increasing subsequence

of length at least c
√
n.

Solution. Let c be a constant which we will specify later and let k = ⌈c
√
n⌉. Take a

permutation of the rows of A uniformly at random. Let the permuted matrix be B. For any

1 ≤ j ≤ n and any 1 ≤ i1 < i2 < · · · < ik ≤ n, let T (j; i1, . . . , ik) be the event that the

sequence Bi1,j, Bi2,j, . . . , Bik,j is increasing. Note that B contains an increasing subsequence

of length at least c
√
n in some column if and only if at least one of the events T (j; i1, . . . , ik)

occurs.

However, the probability of each T (j; i1, . . . , ik) is 1/k! since any ordering of the elements

Bi1,j, . . . , Bik,j is equally likely. Hence, by the union bound,

P(B contains an increasing subsequence of length at least c
√
n in some column) ≤ n

(
n

k

)
· 1
k!
.

Using the approximations
(
n
k

)
≤ (ne

k
)k, k! ≥

√
2πk · kke−k and k ≥ c

√
n, we get

n

(
n

k

)
· 1

k!
≤ n√

2πk

(
ne2

k2

)k

≤ n√
2πk

·
(
e2

c2

)k

≤ n3/4

√
2πc

(
e2

c2

)c
√
n

.

If c > e, then this expression tends to 0 as n → ∞. So we can choose a constant c for which

P(B contains an increasing subsequence of length at least c
√
n in some column) < 1

for all n. This means that for this choice of c, any matrix A has a permutation of its rows

so that no column in the permuted matrix contains an increasing subsequence of length at

least c
√
n.

Problem 2. Prove that every three-uniform hypergraph with n vertices and m ≥ n/3

hyperedges contains an independent set (i.e. a set of vertices containing no hyperedges) of
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size at least
2n3/2

3
√
3
√
m
.

Let S be a random subset of vertices where every vertex is chosen independently with

probability p =
√

n/(3m). Note that by assumption, 0 ≤ p ≤ 1, so p is indeed a valid

probability. For every edge whose all three vertices are in S, remove at most one vertex.

Thus we obtain an independent set I. Let X = |S| and Y be the number of edges whose all

three vertices are in S. Then |I| ≥ X−Y. Showing E[X−Y ] ≥ 2n3/2

3
√
3m

, finishes the proof by the

first moment method. Using linearity of expectation, we have E[X] = np and E[Y ] = mp3.

Plugging in the value of p, we get E[X − Y ] = 2n3/2

3
√
3m

, as claimed.

Problem 3. Prove that if there exists some 0 ≤ p ≤ 1 such that(
n

t

)
p(

t
2) +

(
n

k

)
(1− p)(

k
2) ≤ n/2,

then R(t, k) ≥ n/2. Using this, show that the Ramsey number R(4, k) satisfies

R(4, k) ≥ Ω((k/ ln k)2).

Solution. Define a random red-blue colouring of the edges of Kn as follows. Colour every

edge red with probability p and blue with probability 1−p. Then the expected number of red

cliques of size t is
(
n
t

)
p(

t
2), while the expected number of blue cliques of size k is

(
n
k

)
(1−p)(

k
2).

Hence, there exists a colouring in which the number of blue cliques of size t plus the number

of red cliques of size k is at most
(
n
t

)
p(

t
2) +

(
n
k

)
(1 − p)(

k
2). By assumption, this is at most

n/2. Hence, we can delete at most n/2 vertices and get rid of all red cliques of size t and

blue cliques of size k. The remaining graph has at least n/2 vertices and it has no forbidden

clique, so R(t, k) ≥ n/2.

We will now use this result with t = 4 to prove R(4, k) ≥ Ω((k/ ln k)2). Take n = c(k/ ln k)2

for a sufficiently small positive constant c. We need to prove the existence of 0 ≤ p ≤ 1

which satisfies
(
n
4

)
p6 +

(
n
k

)
(1− p)(

k
2) ≤ n/2. To make sure that the first summand is at most

n/4, we take p = n−1/2 = c−1/2 · ln k
k
. Then(

n

k

)
(1− p)(

k
2) ≤ nke−p(k2) = (ne−p k−1

2 )k.

Note that if c is a sufficiently small positive constant, then ne−p k−1
2 = c(k/ ln k)2e−c−1/2· ln k

k
· k−1

2 <

1, so in this case
(
n
4

)
p6 +

(
n
k

)
(1− p)(

k
2) ≤ n/4 + 1 < n/2.
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